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Abstract

Multiple sensor arrays distributed over a region provide the means for accurate localization of
the (x, y) position of a source. When microphone arrays are used to measure aeroacoustic signals
from ground vehicles, random fluctuations in the air lead to frequency-selective coherence of the
signals that arrive at widely-separated arrays. We have shown previously that even in cases of
imperfect spatial coherence, improvements in source localization accuracy are possible when the
data from widely-separated arrays are processed jointly by a fusion center. Further, we have
shown that a distributed processing scheme involving bearing estimation at individual arrays
and time-delay estimation between pairs of widely-separated sensors performs nearly as well as
the optimum scheme, with significantly lower communication bandwidth. These results were
obtained by studying the Cramer-Rao bound (CRB) on source localization accuracy based on a
statistical model for the data measured at the sensors. The contributions of this paper include
the presentation of more accurate performance bounds (Ziv-Zakai), and the development of a
narrowband subspace algorithm for source localization with distributed arrays and partially
coherent signals. We demonstrate through analysis, simulation, and processing of measured
data that the performance of both algorithms is limited by ambiguities that arise from the
narrowband signals and the large spacing between arrays.

Introd uction1

We are concerned with estimating the location (Xs, Ys) of a wideband source using multiple sensor
arrays that are distributed over an area. We consider schemes that distribute the processing between
the individual arrays and a fusion center in order to limit the communication bandwidth between
arrays and fusion center. Triangulation is a standard approach for source localization with multiple
sensor arrays. Each array estimates a bearing and transmits the bearing to the fusion center, which
combines the bearings to estimate the source location (Xs, ys). Triangulation is characterized by low
communication bandwidth and low complexity, but it ignores coherence that may be present in the
wavefronts that are received at distributed arrays. In this paper, we investigate new approaches
for source localization with multiple arrays that exploit partial coherence of the wavefronts at
distributed arrays. We have shown previously in [1] that the Cramer-Rao lower bound (CRB) on
the variance of source location estimates is reduced when coherence from array to array is exploited.
We also showed in [1] that the CRB changes little for suboptimum source localization methods that
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employ distributed processing to reduce the communication bandwidth between the arrays and the
fusion center .

;
In this paper; we focus on the case of narrowband processing, and algorithms are investigated

for source localization with partially coherent signals that are received by multiple distributed
sensor arrays. Two algorithms are studied: one is based on estimating the time delay in the signals
received by widely-separated arrays, and the other is a subspace algorithm. The algorithms are
evaluated in terms of their ability to achieve the performance predicted by the CRBs developed in
[1], and by processing data measured at Spesutie Island, Maryland. Our algorithms and testing
address the issues of random propagation effects that result in partially coherent signals arriving
at widely separated sensors, and Doppler effects due to source motion are compensated to improve
the coherence.

The performance analysis presented in [1] is based on the Cramer-Rao lower bound (CRB) on
the accuracy of any unbiased estimator of the source location. We model the signals measured at
the distributed sensor arrays as jointly Gaussian wideband random processes. The model accounts
for propagation effects between the source and the distributed arrays, including frequency-selective
spatial coherence and different signal power spectra received at each array. The spatial coherence
of the wavefronts is modeled as perfect over each individual array but imperfect between distinct
arrays. This idealization allows us to study the effect of varying coherence between arrays on source
localization accuracy. Physical modeling of frequency-selective coherence is discussed in [15]. The
power spectral density of the source is arbitrary, allowing a range of cases to be modeled, including
narrowband sources, sums of harmonics, and wideband sources with continuous power spectra.

Previous work on source localization with acoustical arrays has focused on angle of arrival esti-
mation with a single array [2, 3, 4, 5]. These works use the coherent wideband focusing approach
[6, 7] to combine correlation matrices from different narrowband frequency bins into a single corre-
lation matrix that admits subspace processing. The problem of imperfect spatial coherence in the
context of narrowband angle-of-arrival estimation with a single array has been studied in [8]-[11].
Pauraj and Kailath [8] presented a MUSIC algorithm that incorporates the nonideal spatial coher-
ence, assuming that the coherence variation is known. Gershman et al. [9] provided a procedure to
jointly estimate the spatial coherence loss and the angles of arrival. Song and Ritcey [10] provide
maximum-Iikelihood methods for estimating the parameters of a coherence model and the angles
of arrival, and Wilson [11] incorporates physical models for the spatial coherence. The problem
of decentralized array processing has been studied in [12] and [13]. Wax and Kailath [12] present
subspace algorithms for narrowband signals and distributed arrays, assuming perfect spatial coher-
ence across each array but neglecting the spatial coherence between arrays. Weinstein [13] presents
performance analysis for pairwise processing the wideband sensor signals from a single array and
shows negligible loss in localization accuracy when the SNR is high.

The paper is organized as follows. Section 2 describes our model for partially coherent signals
observed by the distributed sensor arrays. Also included in Section 2 are results from measured
data to illustrate that partial signal coherence is present in measured aeroacoustic data with sensors
separated by hundreds of meters. The CRB expressions for source location accuracy are reviewed
in Section 3. Section 4 presents fundamental bounds on time-delay estimation that are an extension
of the Ziv-Zakai bounds [14] to the case of partially coherent signals. Section 5 presents a novel
subspace algorithm for narrowband source localization with distributed arrays and partially coher-
ent signals. Examples of processing measured data are included in Sections 4 and 5, and Section 6
contains a brief discussion of our continuing work.



Figure 1: Geometry of source location and H distributed sensor arrays. A communication link is
available between each array and the fusion center .

Data Model2

A model is formulated in this section for the discrete-time signals received by the sensors in
distributed arrays. Consider a single source that is located at coordinates (Xs, Ys) in the (x, Y)
plane. Then H arrays are distributed in the same plane, as illustrated in Figure 1. Each array
h E {1, ..., H} contains Nh sensors, and has a reference sensor located at coordinates (Xh, Yh). The
location of sensor n E {1, ..., Nh} is at (Xh + ~Xhn, Yh + ~Yhn), where (~Xhn, ~Yhn) is the relative
location with respect to the reference sensor. If c is the speed of propagation, then the propagation
time from the source to the reference sensor on array h is

rh 1 [ 2 ] 1/2 Th = -;- = ; (Xs -Xh) + (Ys -Yh)2 .(1)

We will assume that the wavefronts are well approximated by plane waves over the aperture of
individual arrays. Then the propagation time from the source to sensor n on array h will be
expressed by Th + Thn, where

Xs -Xh A + Ys -Yh A
uX hn uYhn

1
Thn c = -! [(COS<t>h)1lXhn + (sin<t>h)1lyhnJ

crh rh

where Thn is the propagation time from the reference sensor on array h to sensor n on array h, and
4>h is the bearing of the source with respect to array h. Note that while the far-field approximation
(2) is reasonable over individual array apertures, the wavefront curvature that is inherent in (1)
must be retained in order to accurately model the (possibly) wide separation between arrays.

The time signal received at sensor n on array h due to the source will be represented as Sh(t -
Th -Thn), where the vector of signals s(t) = [SI (t), ...I SH(t)]T received at the H arrays are modeled
as real-va.lued, continuous-time, zero-mean, wide-sense stationary, Gaussian random processes with
-00 < t < 00. These processes are fully specified by the H X H cross-correlation function matrix

R8(T) = E{s(t + T) s(t)T}, (3)

where E denotes expectation, superscript T denotes transpose, and we will later use the notation
superscript * and superscript H to denote complex conjugate and conjugate transpose, respectively.
The (9, h) element in (3) is the cross-correlation function

rs,gh(T) = E{sg(t + T) Sh(t)} (4)

(2)



between the signals received at arrays 9 and h. The correlation functions (3) and (4) are equivalently

characterized by their Fourier transforms, which are the cross-spectral density functions

Ga,gh(t..)) = :F{ra,gh(T)} = i: ra,gh(T) exp( -jt..)T) dT (5)

and the associated cross-spectral density matrix

G.(tJJ) = F{R.(T)}. (6)

The diagonal elements G.,hh(tJJ) of (6) are the power spectral density (PSD) functions of the signals
Sh(t), and hence they describe the distribution of average signal power with frequency. The model
allows the average signal power to vary from one array to another. Indeed, the PSD may vary from
one array to another to reflect propagation differences, source aspect angle differences, and other
effects that lead to coherence degradation in the signals. at distributed arrays.

Let us elaborate the definition and the meaning of coherence between the signals Sg(t) and
Sh(t) received at distinct arrays 9 and h. In general, the cross-spectral density function (5) can be
expressed in the form

G.,gh(tJJ) = ")'.,gh(tJJ) [G.,gg(tJJ)G.,hh(tJJ)r/2, {7)

where ")'.,gh(tJJ) is the spectral coherence function, which has the property O ~ 1")'.,gh(tJJ)1 ~ 1. The
coherence function ")'.,gh(tJJ) is generally complex-valued, but we will model it as real-valued. This
is a reasonable assumption for acoustic propagation environments in which the loss of coherence is
due to random changes in the propagation path length [11, 15]. Note that our assumption of perfect
spatial coherence across individual arrays implies that the random changes in the propagation path
length have negligible impact on the intrararraydelays in (2). Thus the apparent bearing 4>h to array
h remains fixed, but the inter-array path delays are randomly perturbed from their deterministic
values given by (1). These random effects are modeled by the signal coherence function, ")'.,gh(tJJ).

We model the signal received at sensor n on array h as a sum of the delayed source signal and
noise,

Zhn(t) = Sh(t -Th -Thn) + Whn(t), (8)

where the noise signals Whn(t) are modeled as real-va.Iued, continuous-time, zero-mean, wide-sense
stationary, Gaussian random processes that are uncorrelated at distinct sensors. That is, the noise
correlation properties are

E{wgm(t + T)Whn(t)} = rw(T) 6gh6mn, (9)

where rw(T) is the noise autocorrelation function, and the noise power spectral density is Gw(i.A) =

.1"{rw(T)}. We then collect the observations at each array h into Nh X 1 vectors
Zh(t) = [Zhl (t), ..., Zh,N,. (t)]T for h = 1, ..., H, and we further collect the observations from the H

arrays into a (Nl + ...+ NH) x 1 vector

Zl (t)

ZH(t)

Z(t) =

ah(W) =

The elements of Z(t) in (10) are zero-mean, wide-sense stationary, Gaussian random processes.
We can express the cross-spectral density matrix of Z(t) in a convenient form with the following
definitions. The array manifold for array h at frequency (41 is

-exP(-j(41Thl)
] r exp [j~ «cos4>h)Azhl + (sin4>h)Ayhl)] ~

.exp(-j~Th,N,,) .= .exp [j~ «COS4>h)AZh'~" + (sin4>h)Ayh,N,,)] .

,

(10)

(11)

.
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using Thn from (2) and assuming that the sensors have omnidirectional response to sources in the

plane of interest. Let us define the relative time delay of the signal at arrays 9 and h as

Dgh = Tg -Th,

where Th is defined in (1). Then the cross-spectral density matrix of Z(t) in (10) has the form

Gz((JJ) =

a1 (i.A))a1 (i.A))HGs,11 (i.A)) al (",,)aH("")H exp( -j""DlH)Gs,lH("")

+ Gw(UJ)1

~ aH(i.I))a1(i.I))H exp(+ji.l)D1H)G8,lH(i.I))* ...aH(i.I))aH(i.I))HG6,HH(i.I))

Recall that the source cross-spectral density functions G8,oh(i.I)) in (13) can be expressed in terms

of the spectral coherence 'Y6,oh(i.I)) using (7).

Note that (13) depends on the source location parameters (X8' Y8) through ah(i.I)) and Doh.

However, (13) points out that the observations are also characterized by the bearings </>1, ..., </>H

to the source from the individual arrays and the relative time delays Doh between pairs of arrays.

Therefore, one way to estimate the source location (X8' Y6) is to estimate the bearings </>1, ..., </>H

and the pairwise time delays Doh.

Signal coherence in measured data2.1

Next we present results from measured aeroacoustic data to illustrate typical values of signal co-
herence at distributed arrays. The experimental setup is illustrated in Figure 2a, which shows the
path of a moving ground vehicle and the locations of four microphone arrays (labeled I, 3, 4, 5).
Each array is circular with N = 7 sensors, 4-ft radius, and six sensors equally spaced around the
perimeter with one sensor in the center. We focus on the 10 second segment indicated by the <)'s
in Figure 2a (which correspond to the time segment 340-350 sec in the data). Figure 2b shows
the power spectral density (PSD) of the data measured at arrays 1 and 3 during the 10 second
segment. Note the dominant harmonic at 39 Hz. Figure 2c shows the estimated coherence between
arrays 1 and 3 during the 10 second segment. The coherence is approximately 0.85 at 40 Hz, which
demonstrates the presence of significant coherence at widely-separated microphones. Exploiting
this coherence has the potential for improved source localization accuracy. Figure 2c shows the
estimated coherence between two sensors on array I, spaced by 8 feet. Note that the coherence is
close to unity for frequencies in the range from about 40 to 200 Hz, so our model of perfect signal
coherence over individual arrays seems reasonable.

The Doppler effect due to source motion was compensated prior to the coherence estimate shown
in Figure 2c. Without Doppler compensation, the coherence is significantly reduced, as shown in
Figure 3a. The time-varying radial velocity of the source with respect to each array in Figure 2a is
plotted in the top panel of Figure 3b. If s(t) is the waveform emitted by the source that is moving
with radial velocity v with respect to the sensor, then the sensor receives a waveform with the form
s(at), where the scaling factor a is

tJ
a = 1 --(14)

c

and c is the speed of wave propagation. The scaling factor a is plotted in the bottom panel of
Figure 3b. Note that for this data set, 0.98 < a < 1.02, which corresponds to a Doppler frequency
shift of approximately :i:1 Hz for an emitted tone at 50 hertz. We use a digital resampling algorithm
to compensate for the Doppler effect.

(13)

(12)

. .

.  ..

. . .

. . .
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Figure 2: (a) Path of ground vehicle and array locations for measured data. (b) Mean power
spectral density (PSD) at arrays 1 and 3 estimated from measured data over the 10 second segment
<> in (b). Top panel is Gs,ll(J), bottom panel is Gs,33(J). (c) Mean spectral coherence ")'s,13(J)
between arrays 1 and 3 estimated over the 10 second segment. (d) Mean spectral coherence for two
sensors on array 1, with sensor spacing 8 feet.



Figure 3: (a) Mean short-time spectral coherence between arrays 1 and 3 if Doppler is not compen-
sated. (b) Radial velocity and Doppler scaling factor a in (14) for source in Figure 2a with respect
to each array.

3 CRBs on Localization Accuracy

The problem of interest is to estimate the source location parameter vector e = [Xs, Ys]T using T
samples of the sensor signals Z(O), Z(Ts), ...,Z((T-l) .Ts), where Ts is the sampling period. Let
us denote the sampling rate by Is = I/Ts and iA)s = 27rls. We will assume that the continuous-
time random processes Z(t) are band-Iimited, and that the sampling rate Is is greater than twice
the bandwidth of the processes. Then Friedlander [18] has shown, using a theorem of Whittle
[19], that the Fisher information matrix (FIM) J for the parameters e based on the samples
Z(O), Z(Ts), ..., Z((T -1) .Ts) has elements

T
dw (15)i, j = 1,2,

l l.A)o tr

Jij = ~ 0

where "tr" denotes the trace of the matrix. The CRB matrix C = J-l then has the property

that the covariance matrix of any unbiased estimator e satisfies Cov(e) -c ~ 0, where ~ °
means that Cov(e) -c is positive semidefinite [17]. The CRB provides a lower bound on the
performance of any unbiased estimator. Equation (15) provides a convenient way to compute the
FIM for the distributed sensor array model. It provides a powerful tool for evaluating the impact
that various parameters have on source localization accuracy. Parameters of interest include the
spectral coherence between distributed arrays, the signal bandwidth and power spectrum, the array
placement geometry, and the SNR. The FIM in (15) is not easily evaluated analytically, but it is
readily evaluated numerically for cases of interest.

Consider an acoustic source that has a narrowband power spectrum. That is, the PSD Gs,hh(f.IJ)
of the signal at each array h = 1, ..., H is nonzero only in a narrow band of frequencies f.IJo -

,



(/).I..)/2) ~ I..) ~ 1..}0 + (/).I..)/2). If the bandwidth /).I..) is chosen small enough so that the I..)-dependent
quantities in (15) are well approximated by their value at 1..}0, then the narrowband approximation
to the FIM (15) is 1

T~t.)

t.)s
trJij ~

The quantity ~ multiplying the FIM in (16) is the time-bandwidth product of the observations.
In narrowband array processing, the T time samples per sensor are often segmented into M blocks
containing T /M sample each. Then the discrete Fourier transform (DFT) is applied to each block,
and the complex coefficients at frequency l.A)o (at each sensor) are used to form M array "snapshots".
In this case, the quantity 1:.4.!!!.. is approximately equal to M .

1.1).

4 Threshold Coherence for Time Delay Estimation

In this section, we present a model for partial signal coherence in terms of an equivalent additive
noise component, which allows the fundamental bounds on time delay estimation in [14] to be
extended to the case of partially coherent signals. Bounds on time delay estimation are important
because one of the suboptimum processing methods proposed in [1] for distributed processing with
low communication bandwidth requires time delay estimation between widely separated sensors.
The fundamental bounds in [14] are useful because they specify the required signal-to-noise ratio
(SNR) such that the CRB is attainable. That is, if the SNR is less than a threshold, then the
CRB on source localization accuracy is an optimistic and unattainable lower bound. We will show
that for signals that are partially coherent when received at the sensors, a threshold phenomenon
occurs with respect to coherence. That is, the signal coherence must exceed a threshold in order
for the CRBs to be attainable. The existence of a threshold phenomenon for signal coherence is a
useful refinement of [1], since the CRBs in [1] are formulated without regard for the conditions of

attainability.
The appendix presents a decomposition of partially coherent signals into a coherent component

and an incoherent additive noise component. Consider estimation of the time delay D in the model
presented as (54),(55) and (64),(65) in the appendix. Let us specialize to narrowband processing,
with signal bandwidth ~t..) centered at t..)o and observation time T seconds. Further, we assume that
the signal power is identical at each sensor, and we define the following constants for notational

simplicity:
G8,11(1.1)0) = G8,2(1.1)0) = G8, GW(I.1)O) = GW, /8,12(1.1)0) = /8. (17)

Then combining the formulation in the appendix with the development in [14], we can show that
the following SNR expression characterizes the performance of time delay estimation with partially
coherent signals:

SNR(/8) =

From [14], the threshold SNR for CRB attainability in the narrowband time delay estimation
problem is

SNRthresh =

.

(18)

(19)



/ ~ fyoo exp( -t2 /2) dt. Thuswhere <!>(y) =

SNR(")'8) ~ SNRthresh

identifies the values of signal coherence !a and signal/noise PSDs G8/GW for CRB attainability.
We can combine (18) with (20) to obtain the condition for CRB attainability

~>

Gw-

1
)1/2 l'Ysi (1+~

-1

which is possible only if
1

Irsl2 ~ 1 + -L- .~;t;t)

SNRthresh
For a specific narrowband time delay estimation scenario, the threshold SNR for CRB attainability
is given by (19), and (22) provides a corresponding threshold coherence for CRB attainability.

For example, consider time delay estimation in a band centered at Wo = 21r50 rad/sec using a
time segment of duration 2 seconds.

.For a 1 Hz bandwidth, i.e., ~£A) = 27r rad/sec, nearly perfect coherence (r8 = 0.99995} is

required in order to enter the regime of CRB attainability.

For a 10 Hz bandwidth, i.e

attainability.

~I.A) = 21!"10 rad/sec, the coherence must exceed 0.93 for CRB

The implication is that for the narrowband signals with il!.l) = 211" rad/sec, any loss of coherence
leads to difficulty with time delay estimation due to ambiguities arising from the narrowband signals.
But for sufficiently wideband signals, e.g., il!.l) = 211"10 rad/sec, a certain amout of coherence loss
can be tolerated while still allowing unambiguous time delay estimation.

We present an illustration based on processing the measured data for the source in Figure 2a.
Figure 4 shows results of cross-correlation processing of the data for a 2 second segment at time
342 seconds. Figure 4a is obtained by cross-correlating the signals received at arrays 1 and 3, for
which the coherence is appreciable only over a narrow band near 39 Hz. A peak in the cross-
correlation is not evident, which is expected based on the preceding analysis, since nearly perfect
coherence is needed for narrowband time delay estimation in this scenario. Figure 4b is obtained
by cross-correlating the signals received at two sensors on array 1, where the coherence is as shown
in Figure 2d. Due to the high signal coherence over a wide band, a peak is clearly evident in the
cross-correlation.

Subspace Processing5

In this section, we begin with an eigenanalysis of the cross-spectral density matrix (13) for the
case of H = 2 arrays containing N1 = N2 = N sensors operating in a narrow band of frequencies
centered at i.l)o. This analysis leads to a MUSIC-like subspace algorithm for source localization
with distributed arrays and partial signal coherence. We illustrate with computer simulations
and measured aeroacoustic data that the new subspace algorithm is limited in performance due to
source location ambiguities that arise from the large separation between arrays and the narrowband

signals.
To simplify notation, we will let ah represent the array manifold ah (i.I)o), O"~ represent the average

signal power at array h in the frequency band of interest, O"~ is the average noise power, and 'Y is

,

(20)

(21)
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Figure 4: (a) Cross-correlation of signals at arrays 1 and 3 in Figure 2a for source at time 342 sec
(b) Cross-correlation of signals at two sensors on array 1, separated by 8 feet.

the coherence 'Ys,12(WO). We allow 'Y to be complex-valued with
as the correlation matrix

I'll ~ 1. Then (13) can be expressed

0"21
*

'10"10"2

al a~ exp( -j""ODl2)
H

a2a2

10"10"2

O"~

R(12) = I + q~I,

(23)
where @ denotes Kronecker product, o denotes elementwise product, and lNxN is an N X N matrix
of 1 's. The superscript (12) in (23) indicates that the quantity is the combined correlation matrix
of all sensors in arrays 1 and 2. The correlation matrices for the individual arrays 1 and 2 are

@lNxN 0
H

at at

a2 a{f exp( +jU)OD12)

R(h) 2 H 2 1O"hah ah + O"w , h= 1,2.

It is well-known that the individual array correlation matrices R(l) and R(2) in (24) have a rank-l
signal subspace, and that the signal subspace eigenvalue is

with corresponding eigenvector

e(h)1 ah, h 1,2.

The remaining eigenvalues >.~h) , n = 2, ..., N are equal to u~.

Now we present the eigenanalysis of the combined correlation matrix R(12) in (23) .The deriva-
tion of these results is similar to the reasoning in the appendix of [8]. We assume that the arrays
are labeled so that u~ ~ u~ , and that the sensors are omnidirectional so that the array manifold

=
(24)

(25)

(26)= =
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5. Wax and Kailath [12] proposed an "incoherent" MUSIC-type source location estimator that
ignores coherence between the arrays. The form of the Wax and Kailath estimator can be
expressed as follows,

1
Pi(Xs! Ys) = (41)

where y(h) = [e~h) , ..., e~)] contains the noise eigenvectors of R(h)

This analysis extends to the case of H arrays with a single source. If the signals are partially
coherent at all arrays, then the dimension of the signal subspace of the combined correlation matrix
is H. If K signals are present, then the combined correlation matrix has signal subspace with rank
KH.

Examples of subspace processing5.1

We present examples of the "partially coherent" MUSIC algorithm (40) and the "incoherent"
MUSIC algorithm (41) with computer simulations and measured data. First, we simulate a scenario
with H = 2 arrays. The individual arrays are identical and contain NI = N2 = N = 7 sensors.

Each array is circular and has 4-ft radius, with six sensors equally spaced around the perimeter and
one sensor in the center. Narrowband processing centered at 40 Hz is assumed, with an SNR of 40
dB per sensor at array 1 and 34 dB at array 2, i.e., G6,II(I.1))/Gw(l.1)) = 104, G6,22(1.1))/Gw(l.1)) = 2500.
The coherence is set to two values, ,6,12 = 0.9 and 0.999. The arrays are located at coordinates
(XI, YI) = (0,150), (X2, Y2) = (0,0), and one source is located at (X6' Y6) = (200,300), where the
units are meters. Source location estimation is performed using M = 30 snapshots, where each

snapshots contains an estimate of the measured complex amplitude at 40 Hz at each sensor.
Results are presented in Figure 5, where part a shows an approximate CRB as a function of

signal coherence.I Increasing coherence leads to modest improvement in the localization potential.
Figures 5b and 5c contain representative spectra of incoherent and partially coherent MUSIC,
respectively, for coherence '6,12 = 0.9. Note that the incoherent MUSIC spectrum has a rather
broad but unique maximum. The partially coherent MUSIC spectrum has a sharp ridge in one
direction, with multiple peaks along the ridge. The multiple peaks arise due to the ambiguities in
source location caused by the narrowband signals and large separation between arrays.

Table 1 contains results of Monte Carlo simulations with 100 runs for both coherence values,
'6,12 = 0.9 and 0.999. The incoherent MUSIC performs close to the approximate CRB in Figure Sa
corresponding to '6,12 = 0. Partially coherent MUSIC performs worse than incoherent MUSIC
because of the ambiguities: partially coherent MUSIC sometimes chooses the incorrect peak along
the ridge in the spectrum shown in Figure 5c. Note that partially coherent MUSIC is more accurate
for ,6 = 0.999 than for ,6 = 0.9, suggesting that the ambiguities are less severe when the signal
coherence is larger .

We have applied incoherent MUSIC and partially coherent MUSIC to the measured data sce-
nario in Figure 2. The data is processed in a narrow band around 39 Hz for the 2-second interval
between 345 and 347 seconds. Both algorithms produce identical estimates for the source location
in this case, but the spectra for partially coherent MUSIC are shown in Figure 6. The top panel
clearly shows the ambiguities that limit the performance with narrowband signals. The contour
plot in the bottom panel also shows the periodic structure of the ambiguities.

lThe CRB is approximate because the mapping of the scaling factor ~ in (16) to the number of snapshots M
is approximate.





Table 1: RMS error in simulation results for incoherent and partially coherent MUSIC.
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Figure 6: Partially coherent MUSIC spectrum for measured data.



Concluding Remarks6

Items of continuing work include the following.

.The analysis in this paper was focused primarily on narrowband processing. We found that
source location ambiguities due to the narrowband signals are an important limitation when
distributed arrays are processed jointly. Signals that maintain coherence over a wider band-
width are expected to experience fewer problems with ambiguities, so we are evaluating
algorithms for this scenario.

.We are continuing to process measured data, particularly data from distributed arrays with
synchronized sampling at the arrays, courtesy of Sanders Corporation.

.We are investigating models for the source motion that will improve accuracy and allow

tracking.

.We are investigating extensions to the case of tracking multiple moving sources.

A Equivalent Additive N oise Model for Coherence

The formulation in this appendix begins with Gaussian random variables for simplicity, and then
the formulation is extended to Gaussian random processes.

Let X and y be two complex, circular, Gaussian random variables with zero mean and

E{IXI2} = O'f, E{IYI2} = O'f, E{XY*} = PO'xOY

Then X and y can be expressed as

x = O"xS + Nl

-p* IpjOYS + N2,y

where 8, N1, N2 are independent, zero mean, complex, circular Gaussian random variables with

E{ISr}

E{INlI2}

E{IN2r}

(45)

(46)

(47)

= Ipl

= O'i (1 -Ipl)

= O'f (1 -Ip\)

The relations in ~42) can be verified using (43)-(47). Note that for X, the "coherent" part O"xS
has variance IplO"x, while the "incoherent" part Nl has variance (l-lpl) O"i. As Ipl decreases, a
larger portion of O"i is applied to Nl, so the incoherent noise gets stronger .

Suppose that X and y described by (42) are observed in noise,

Zl x + Wl = O'xS + Nl + Wl

p*Y+Wl = TPioyS+N2+W21Z2

(42)

(43)

(44)

.

=

=

(48)

(49)



where Wl and W2 are independent, zero mean, complex, circular Gaussian random variables with
variance O"tv, and Wl, W2 are independent of X, y (and therefore S, Nl, N2). If we define the SNR
of Zl and Z2 based only on the coherent signal component, then

SNRl = Ipl O"i = 2 Ipl (50)
O"tv + (l-lpl)O"i ~ + (l-lpl)

O-x

SNR2 = 2 IplO"f 2 = 2 Ipl .(51)

O"w + (1 -Ipl) O"y ~ + (1 -Ipl)
O-y

Some observations about (50) and (51) follow.

1, SNR1 and SNR2 increase monotonically as Ipl increases.

2, SNR1 (SNR2) increases monotonically as ui ( uf ) increases, and for fixed Ipl is bounded by

lim SNRl = lim SNR2 = 1 Ipi i l ' (52)

(12 -+00 (12 -+00 - Px y

Th us a loud source (large ui, uf) has larger coherent SNR, i,e. I increasing ui, uf cannot
reduce the coherent SNR, but the limit (52) cannot be exceeded for a given Ipl.

3, If a particular coherent SNR is desired, then (52) implies a threshold coherence magnitude
Ipl that is required to achieve that SNR, given by

SNR
Ipi ? 1 + SNR' (53)

Note that for large coherent SNR, nearly perfect coherence Ipi ~ 1 is required,

The analysis extends to complex Gaussian random processes as follows, Consider a time delay
estimation problem with two sensors and noisy observations of the form in (8) I

zl (t) = 81 (t) + wl (t) (54)

Z2(t) = 82(t -D) + W2(t), (55)

where Wl(t),W2(t) are additive, white, Gaussian noise (AWGN) processes, 81(t),82(t) are partially
coherent Gaussian random processes, and D is the time delay. The AWGN processes Wl(t), W2(t)
have properties as in (9) with power spectral density (PSD) Gw(I.A))I and the signals 81(t), 82(t) are
characterized by the cross-spectral density matrix

Ga,ll(i.IJ) 'Ya,12(i.IJ) (Ga,11(i.IJ)Ga,22(i.IJ))1!2

'Ya,12(i.IJ)* (Ga,11(i.IJ)Ga,22(i.IJ))1!2 Ga,22(i.IJ)

Then analogous to (43, (44), Sl(t) and S2(t) can be represented as

Sl(t) = h1(t) * s(t) + nl(t) (57)

S2(t) = h2(t) * s(t) + n2(t) (58)

where s(t),nl(t),n2(t) are independent, zero mean, circular, complex Gaussian random processes,
* denotes convolution, and

81 (t)

82(t)

,.."

(59)

(60)

(61)

(62)

(63)

H1(l.I)) = G6,11(l.I))1/2

H ( ) 'Y6,12(l.I))* G ( ) 1/22 l.I) = 1 ( )1 6,22 l.I)
'Y6,12 l.I)

G6(l.I)) = 1'Y6,12(l.I))1

G1(l.I)) = G6,11(l.I)) [1-1'Y6,12(l.I))U

G2(l.I)) = G6,22(l.I)) [1-1'Y6,12(l.I))U .

(56).



Gs(U)), G1(U)), G2(U)) are the PSDs of s(t), n1(t), n2(t), and H1 (U)), H2(U)) are the frequency responses
corresponding to h1 (t), h2(t) that model the deterministic "channels?' from source to sensors. Then
(57),(58) can be inserted into (54),(55),

Zl (t)

Z2(t)

(64)

(65)

- (hi * s)(t) + n1(t) + W1(t)

(h2 * s)(t -D) + n2(t) + W2(t),-

which fits the standard model for time delay estimation of coherent signals observed through linear
filters in AWGN [20]. The partial signal coherence 'Ya,l2(i.A)) between 8l(t),82(t) in (54),(55) is
equivalently modeled by the filtered coherent signals (hl * 8), (h2 * 8) and the excess additive noise

nl(t),n2(t).
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